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Abstract
Endocytic system dysfunction is one of the earliest disturbances that occur in Alzheimer’s disease
(AD), and may underlie the selective vulnerability of cholinergic basal forebrain (CBF) neurons
during the progression of dementia. Herein we report that genes regulating early and late
endosomes are selectively upregulated within CBF neurons in mild cognitive impairment (MCI)
and AD. Specifically, upregulation of rab4, rab5, rab7, and rab27 was observed in CBF neurons
microdissected from postmortem brains of individuals with MCI and AD compared to age-
matched control subjects with no cognitive impairment (NCI). Upregulated expression of rab4,
rab5, rab7, and rab27 correlated with antemortem measures of cognitive decline in individuals
with MCI and AD. qPCR validated upregulation of these select rab GTPases within
microdissected samples of the basal forebrain. Moreover, quantitative immunoblot analysis
demonstrated upregulation of rab5 protein expression in the basal forebrain of subjects with MCI
and AD. The elevation of rab4, rab5, and rab7 expression is consistent with our recent
observations in CA1 pyramidal neurons in MCI and AD. These findings provide further support
that endosomal pathology accelerates endocytosis and endosome recycling, which may promote
aberrant endosomal signaling and neurodegeneration throughout the progression of AD.
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Introduction
Degeneration of cholinergic basal forebrain (CBF) neurons within the nucleus basalis (NB)
is a pathological hallmark of Alzheimer’s disease (AD) in concert with amyloid deposition,
neurofibrillary tangle (NFT) accumulation, and synaptic loss. Notably, CBF neurons are
selectively vulnerable to neurodegeneration during the early stages of AD (Cuello et al.,
2010; Mufson et al., 2003, 2007a; Whitehouse et al., 1982). Mechanisms underlying the
degeneration of the cholinergic neurons within the NB region of the CBF are not well
understood. This data is critical for the development of rational therapies for age-related
dementing illnesses, including mild cognitive impairment (MCI) and AD.

The endosomal pathway performs a multiplicity of integral functions in neurons including
internalizing nutrients and growth factors, recycling receptors, and signaling information to
appropriate intracellular pathways (Bishop, 2003; Cataldo et al., 1996; Nixon and Cataldo,
1995). A group of small ras-related GTPase (rab) proteins coordinate trafficking of vesicles
from early to late endosomes and other organelles along endosomal-lysosomal pathways
(Ng and Tang, 2008; Novick and Brennwald, 1993; Seachrist and Ferguson, 2003; Spang,
2004; Zerial and Stenmark, 1993). Early endosomes receive their contents through
endocytosis and target cargoes for vesicular transport via late endosomes to lysosomes,
deliver specific cargoes to the Golgi via the retromer, and/or recycle elements to the plasma
membrane (Bonanomi et al., 2006; Bronfman et al., 2007). Late endosomes obtain
degradative enzymes, including acid hydrolases such as cathepsins, from the trans-Golgi
network or by fusion with lysosomal compartments (Bright et al., 2005; Cowles et al.,
1997). Endosomes play a crucial role in neuronal development and synaptic transmission
(Bronfman et al., 2007; Ibanez, 2007; Salehi et al., 2006; Wang et al., 2007). Moreover,
signaling endosomes contain rab GTPases and neurotrophin receptor signaling complexes.
For example, the early endosome effector rab5 and late endosome constituent rab7 have
been shown in cellular models to regulate nerve growth factor (NGF) signaling (Deinhardt et
al., 2006; Liu et al., 2007; Saxena et al., 2005; Valdez et al., 2007). Further, our group has
demonstrated that upregulation of rab5 expression downregulates the brain-derived
neurotrophic receptor (BDNF) receptor TrkB (Ginsberg et al., 2010a).

Dysfunction of the endosomal system is one of the earliest pathologies observed in the AD
brain, as early endosomes in vulnerable forebrain neurons are significantly enlarged
compared to control brains (Cataldo et al., 1997, 2001; Nixon et al., 2001). Endosomal
alterations precede manifestations of clinical symptoms of AD, intracellular NFT formation,
cerebral and vascular amyloid deposition, and are highly selective for AD (Cataldo et al.,
2000, 2001; Nixon and Cataldo, 2006; Nixon et al., 2001). In addition, proteins involved in
the regulation of endocytosis and early endosomal fusion, including the rab GTPases rab4
and rab5 are increased in expression and altered in location in the AD brain as well as in
animal and cellular models of this disease, reflecting an over activation of endocytosis
(Grbovic et al., 2003; Mathews et al., 2002; Nixon, 2004). Recently, we observed a selective
upregulation of genes regulating early endosomes (rab4 and rab5), late endosomes (rab7),
and trafficking compartments (rab24), among others within CA1 hippocampal pyramidal
neurons harvested postmortem from subjects with an antemortem clinical diagnosis of MCI
and AD (Ginsberg et al., 2010a). Upregulation of these rab GTPase genes correlate with
cognitive decline during AD progression, and hippocampal qPCR and immunoblot analyses
confirmed increased levels of these transcripts and their respective encoded proteins,
although causality cannot be determined in postmortem human tissues (Ginsberg et al.,
2010a, 2010b).

At the molecular and cellular level, endosomal pathway gene dysregulation likely affects
survival and maintenance of various forebrain projection systems including the basocortical
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cholinergic system, which depend upon retrograde trafficking of members of the NGF
family of neurotrophins and their receptors and play a key role in the pathogenic and clinical
progression of AD (Bronfman et al., 2007; Mufson et al., 2007a, 2007b). Thus, the
regulation of neurotrophin signaling in the forebrain is likely to be dependent upon a
multiplicity of factors including specific rab GTPases, among other potential regulators
(Ginsberg et al., 2010a). In this regard, single population expression profiling studies from
our group demonstrated early down regulation of the NGF, BDNF, and NT3 receptors TrkA,
TrkB, TrkC, respectively, but not the pan-neurotrophin receptor p75NTR within NB neurons
during the progression of AD (Ginsberg et al., 2006b, 2006c) but whether these neurons also
display alterations in endosomal-lysosomal gene expression is unknown. Previous studies
report an upregulation of select rab GTPases localized to early endosomal, late endosomal,
and trafficking compartments within CA1 neurons (Ginsberg et al., 2010a) as well as rab5
and rab7 protein level upregulation in the hippocampus (Ginsberg et al., 2010b), assessment
of rab GTPase expression levels within CBF neurons along with coordinated encoded
protein expression level assessment is warranted.

As progressive late-onset neurodegenerative disorders such as AD differentially affect
neurons throughout the forebrain, assessment of individual populations of vulnerable
neurons is highly desirable, as this approach obviates concerns of heterogeneous expression
profiles derived from admixed neuronal and non-neuronal cell types (Ginsberg, 2008;
Ginsberg et al., 2011; Ginsberg and Mirnics, 2006). Herein, select endosomal markers were
assessed within homogeneous populations of NB CBF neurons harvested from subjects who
died with a clinical diagnosis of no cognitive impairment (NCI), MCI, or AD using laser
capture microdissection (LCM) and custom-designed microarray analysis along with qPCR
and immunoblot validation of select genes that were differentially regulated on the
microarray platform.

Materials and Methods
Brain tissue

This study was performed under the auspices of Institutional Review Board (IRB) guidelines
administrated by the Rush University Medical Center and the Nathan Kline Institute/New
York University Langone Medical Center. Clinical and neuropsychological criteria for the
Religious Orders Study cohort have been published previously (Bennett et al., 2002; Mufson
et al., 2000, 2002). Subjects deemed to be devoid of any comorbid conditions contributing
to cognitive impairment were entered into the Religious Orders Study. Antemortem
cognitive testing, including the Mini-Mental State Exam (MMSE) and a global cognitive
score (GCS) were available within the last year of death. The GCS consists of a battery of
19 neuropsychological tests, providing a composite score for each subject in addition to the
individual scores on the respective tests (Arvanitakis et al., 2008; Bennett et al., 2002). A
board-certified neurologist designated a clinical diagnosis of NCI {n=11; mean age ±
standard deviation (SD) = 81.0 ± 9.6 years}, MCI (n = 10; 81.9 ± 4.3 years), and mild/
moderate AD (n = 9; 86.6 ± 4.8 years) for each Religious Orders Study participant (Table I).
MCI subjects were defined as individuals with impaired cognitive testing without frank
dementia (DeKosky et al., 2002; Mufson et al., 2000), consistent with the clinical
classification of MCI adopted by independent research groups (Petersen and Negash, 2008;
Reisberg et al., 2008; Winblad et al., 2004).

Tissue blocks containing the substantia innominata which includes the cholinergic neurons
of the NB (Mufson et al., 2002, 2003) were obtained at autopsy and immersion-fixed in 4%
paraformaldehyde in 0.1 M phosphate buffer, pH 7.2 for 24 hours at 4 °C, paraffin
embedded, and sectioned at 6 μm thickness. Adjacent tissue slabs were also snap-frozen in
liquid nitrogen for qPCR and immunoblotting studies. A neuropathological diagnosis was
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made independent of the clinical diagnosis. Neuropathological designations were based on
NIA-Reagan, CERAD, and Braak staging criteria (Braak and Braak, 1991; Hyman and
Trojanowski, 1997; Mirra et al., 1991). ApoE genotype and amyloid burden were assessed
as described previously (Arvanitakis et al., 2008; Bennett et al., 2004; Braak and Braak,
1991; Counts et al., 2007; Mufson et al., 2000).

Tissue preparation for microarray analysis
Acridine orange histofluorescence (Ginsberg et al., 1997, 1998; Mufson et al., 2002) and
bioanalysis (2100, Agilent Biotechnologies, Palo Alto, CA) (Ginsberg et al., 2006a, 2006c;
Ginsberg and Mirnics, 2006) were performed on each brain to ensure the presence of high
quality RNA. All of the solutions were made with 18.2 mega Ohm RNase-free water
(Nanopure Diamond, Barnstead, Dubuque, IA) and RNase-free precautions were used
throughout the experimental procedures.

Immunocytochemistry to identify CBF neurons for custom-designed microarray analysis
was performed as described previously (Counts et al., 2007, 2008, 2009; Ginsberg et al.,
2006a, 2006c). Tissue sections were processed for immunocytochemistry using a
monoclonal antibody raised against human p75NTR (Counts et al., 2004; Mufson et al.,
1989a, 2002; Schatteman et al., 1988). p75NTR colocalizes with approximately 95% of all
CBF neurons within the human NB (Mufson et al., 1989a, 1989b). CBF neurons selected for
microaspiration were localized to the anterior subfields of the NB extending from the
decussation of the anterior commissure to its emergence at level of the amygdalar complex
(Mufson et al., 1989b, 2002). Deparaffinized tissue sections were blocked in a 0.1 M Tris
(pH 7.6) solution containing 2% donor horse serum (DHS; Sigma, St. Louis, MO) and
0.01% Triton X-100 for 1 hour and then incubated with the primary antibody (Neomarkers,
Fremont, CA; 1:20,000 dilution) in a 0.1 M Tris/2% DHS solution overnight at 4 °C in a
humidified chamber. Sections were processed with the ABC kit (Vector Labs, Burlingame,
CA) and developed with 0.05% diaminobenzidine (Sigma), 0.03% hydrogen peroxide, and
0.01 M imidazole in Tris buffer for 10 minutes (Counts et al., 2009; Ginsberg et al., 2006a,
2006c, 2010a). Tissue sections were not coverslipped or counterstained and maintained in
RNase-free 0.1 M Tris for LCM.

LCM and Terminal Continuation (TC) RNA amplification
LCM and TC RNA amplification procedures have been described in detail (Alldred et al.,
2008, 2009; Che and Ginsberg, 2004; Ginsberg, 2005, 2008; Ginsberg et al., 2010a). CBF
neurons from the NB were microaspirated via LCM (Arcturus PixCell IIe, Applied
Biosystems, Foster City, CA) as described previously (Counts et al., 2008, 2009; Ginsberg
et al., 2006b, 2010a). Approximately 25 cells were captured per reaction for population cell
analysis. A total of 3-8 reactions (containing 50 LCM-captured CBF neurons each) were
performed per human brain. Linearity and reproducibility of the TC RNA amplification
procedure has been published previously, including the use of CBF neurons as input sources
of RNA (Alldred et al., 2008, 2009; Che and Ginsberg, 2004; Ginsberg, 2008). The TC
RNA amplification protocol is available at http://cdr.rfmh.org/pages/ginsberglabpage.html.
LCM-captured CBF neurons were homogenized in 500 μl of Trizol reagent (Invitrogen),
chloroform extracted, and isopropanol precipitated (Alldred et al., 2009). RNAs were
reverse transcribed in a solution containing a poly d(T) primer (100 ng/μl) and TC primer
(100 ng/μl) in 1X first strand buffer (Invitrogen), 2 μg of linear acrylamide (Applied
Biosystems), 10 mM dNTPs, 100 μM dithiothreitol (DTT), 20 U of SuperRNase Inhibitor
(Applied Biosystems) and 200 U of reverse transcriptase (Superscript III, Invitrogen). Single
stranded cDNAs were digested and then placed in a thermal cycler in a solution consisting
of 10 mM Tris (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, and 10 U RNase H (Invitrogen) in a
final volume of 100 μl. The thermal cycler program was set as follows: RNase H digestion
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at 37 °C, 30 minutes; denaturation at 95 °C, 3 minutes; and primer re-annealing at 60 °C, 5
minutes. Samples were purified by column filtration (Montage, Millipore, Billerica, MA).
Hybridization probes were synthesized by in vitro transcription using 33P incorporation in
40 mM Tris (pH 7.5), 6 mM MgCl2, 10 mM NaCl, 2 mM spermidine, 10 mM DTT, 2.5 mM
ATP, GTP and CTP, 100 μM of cold UTP, 20 U of RNase inhibitor, 2 KU of T7 RNA
polymerase (Epicentre, Madison, WI), and 120 μCi of 33P-UTP (Perkin-Elmer, Boston,
MA) (Alldred et al., 2009; Ginsberg, 2008). The reaction was performed at 37 °C for 4
hours. Radiolabeled TC RNA probes were hybridized to custom-designed cDNA arrays
without further purification.

Custom-designed array platforms and hybridization
Array platforms consisted of 1 μg of linearized cDNA purified from plasmid preparations
adhered to high-density nitrocellulose (Hybond XL, GE Healthcare, Piscataway, NJ). Each
cDNA and/or expressed sequence-tagged cDNA (EST) was verified by restriction digestion
and sequence analysis. Human and select mouse clones were employed on the custom-
designed array. Notably, all of the rab GTPases and related endosomal-lysosomal-
autophagic genes were derived from human sequences. Approximately 576 cDNAs/ESTs
were utilized on the current array platform. The majority of genes are represented by one
transcript on the array platform.

Arrays were prehybridized (2 hours) and hybridized (12 hours) in a solution consisting of
6X saline–sodium phosphate–ethylenediaminetetraacetic acid (SSPE), 5X Denhardt’s
solution, 50% formamide, 0.1% sodium dodecyl sulfate (SDS), and denatured salmon sperm
DNA (200 μg/ml) at 42 °C in a rotisserie oven (Ginsberg, 2005, 2008). Following
hybridization, arrays were washed sequentially in 2X SSC/0.1% SDS, 1X SSC/0.1% SDS
and 0.5X SSC/0.1% SDS for 15 min each at 37 °C and placed in a phosphor screen for 24
hours. Arrays were developed on a phosphor imager (GE Healthcare). All array images were
adjusted to the same brightness and contrast levels for data acquisition and analysis.

Statistical analysis for the microarray study
Procedures for custom-designed microarray analysis have been described in detail (Alldred
et al., 2008, 2009; Ginsberg, 2008; Ginsberg et al., 2006b, 2006c, 2010a; Ginsberg and
Mirnics, 2006). Briefly, expression of TC amplified RNA bound to each linearized cDNA
minus background was expressed as a ratio of the total hybridization signal intensity of the
array. This global normalization approach does not allow the absolute quantitation of mRNA
levels. However, an expression profile of relative changes in mRNA levels was generated
(Eberwine et al., 2001; Ginsberg, 2005, 2008). Clinical and demographic characteristics
were compared among clinical diagnostic groups by one-way analysis of variance
(ANOVA) or Fisher’s exact test and neuropathologic classifications were compared by
Kruskal-Wallis test. Bonferroni correction was employed for multiple comparisons.
Associations between gene expression levels and case characteristics including diagnostic
groups, demographic, clinical, and neuropathological variables was evaluated via mixed
models repeated measures analyses with random intercept, fixed effect covariate, equal
variance assumption, Kenward-Roger denominator degrees of freedom, and unstructured
covariance structure (SAS Institute Inc, 2009). In cases where at least one variance
component was estimated to be zero, analyses were performed with the term for random
intercept removed from the model. For graphical presentations, the mean expression level of
each case was plotted. The level of statistical significance was set at 0.01 (two-sided) to
account for the large number of analyses performed.
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qPCR
qPCR was performed on frozen micropunches of the basal forebrain containing the NB from
NCI (n= 11), MCI (n= 8), and mild/moderate and severe AD (n= 8) Religious Orders Study
cases. Five of these cases were also included in the microarray experiment. See
Supplemental Table I for demographic information and neuropathological assessment of the
cases used for qPCR. Taqman (Applied Biosystems) qPCR primers were employed for the
following genes: rab4 (Hs01106488_m1), rab5 (Hs00991293_g1), rab7 (Hs01115139_m1),
rab24 (Hs01585713_g1), rab27 (Hs00608302_m1), and the housekeeping gene Gapdh
(Hs02758991_g1). Assays were performed on a real-time PCR cycler (7900HT, Applied
Biosystems) in 96-well optical plates with caps (Alldred et al., 2008, 2009; Devi et al.,
2010; Kaur et al., 2010). The ddCT method was employed to determine relative gene level
differences with Gapdh qPCR products used as a control (ABI, 2004; Alldred et al., 2009;
Devi et al., 2010; Kaur et al., 2010). qPCR assessments were run in triplicate for each case.
Variance component analyses demonstrated that the within-case variability was sufficiently
small. Therefore, the triplicate average was computed for each case and used in subsequent
analyses. Alterations in PCR product synthesis were compared across diagnostic groups by
Kruskal-Wallis test, with Bonferroni correction for post-hoc comparisons. Associations
between qPCR expression levels and cognitive measures or neuropathological criteria were
assessed by Spearman rank correlation or Wilcoxon rank-sum test. The level of statistical
significance was set at 0.05 (two-sided).

Immunoblot analysis
Frozen basal forebrain samples microdissected from NCI (n= 18), MCI (n= 10), and mild/
moderate and severe AD (n= 19) brains were obtained from four brain banks (see
Supplemental Table II for case demographics and neuropathological characterization). The 5
Religious Orders Study cases with tissue available for both the microarray and qPCR
experiments were also included in the immunoblot analysis. Samples were homogenized in a
20 mM Tris-HCl (pH 7.4) buffer containing 10% (w/v) sucrose, 1 mM
ethylenediaminetetraacetic acid (EDTA), 5 mM ethylene glycol-bis (ß-aminoethylether)-N,
N, N’, N’-tetra-acetic acid (EGTA), 2 mg/ml of the following: (aprotinin, leupeptin, and
chymostatin), 1 mg/ml of the following: {pepstatin A, antipain, benzamidine, and
phenylmethylsulfonyl fluoride (PMSF)}, 100 μg/ml of the following: {soybean trypsin
inhibitor, Na-p-tosyl-L-lysine chloromethyl ketone (TLCK), and N-tosyl-L-phenylalanine
chloromethyl ketone (TPCK)}, 1 mM of the following: (sodium fluoride and sodium
orthovanadate) and centrifuged as described previously (Counts et al., 2004; Ginsberg et al.,
2010a, 2010b). All protease inhibitors were purchased from Sigma (St. Louis, MO).
Homogenates (10 μg) were subjected to sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE; 4-15% gradient acrylamide gels; Bio-Rad, Hercules, CA), and
transferred to nitrocellulose by electroblotting (Mini Transblot, Bio-Rad). Nitrocellulose
membranes were placed in blocking buffer (LiCor, Lincoln, NE) for 1 hour at 4 °C prior to
being incubated with antibodies directed against rab5 (rab5A; rabbit polyclonal sc-309;
Santa Cruz Biotechnology, Santa Cruz, CA; 1:1,000 dilution), rab7 (rabbit polyclonal
sc-10767; Santa Cruz Biotechnology 1:1,000 dilution), or ß-tubulin (TUBB; monoclonal
antibody; Sigma, 1:1,000 dilution) in blocking buffer overnight at 4 °C. Membranes were
developed using affinity–purified secondary antibodies conjugated to IRDye 800 (Rockland,
Gilbertsville, PA), visualized using an infrared detection system (Odyssey, LiCor), and
immunoblots quantified by densitometric software supplied by the manufacturer. rab5-
immunoreactive and rab7-immunoreactive bands were normalized to TUBB
immunoreactivity. Differences in immunoreactive band intensity were compared across
diagnostic groups by Kruskal-Wallis test, with Bonferroni correction for post-hoc
comparisons. Associations between protein levels and clinical, demographic, and
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neuropathological variables were assessed by Spearman rank correlation or Wilcoxon rank-
sum test. The level of statistical significance was set at 0.05 (two-sided).

Results
Clinical and neuropathological characteristics

In all three experiments (microarray, qPCR, and immunoblot analysis), age, gender,
educational level, and postmortem interval (PMI) were comparable across the three clinical
diagnostic groups (Table I and Supplemental Tables I and II). Distribution of Braak scores
was significantly different across clinical conditions, with NCI having lower Braak scores
than AD and the Braak scores of MCI between those of NCI and AD (Table I and
Supplemental Tables I and II). NIA-Reagan diagnosis and CERAD diagnosis, which were
available for the microarray and qPCR cases, differentiated NCI from AD (see Table I and
Supplemental Table I).

Microarray analysis of select rab GTPases in CBF neurons
Datasets were generated by expression profiling 174 NB LCM population cell captures
(with a median of 5 and a range of 3-11 cells per case) via custom-designed microarray
analysis. Results identified differential regulation of several rab GTPases, including
significant up regulation of early endosome effectors rab4 (p < 0.0008; AD>NCI & MCI)
and rab5 (p < 0.0001; AD & MCI>NCI), late endosome constituent rab7 (p < 0.0002; AD &
MCI>NCI), and the exocytic secretion pathway molecule rab27 (p < 0.002; AD>NCI) (Fig.
1 and Table II). Alterations in rab5 and rab7 expression were considered early changes, as
upregulation was observed in MCI and AD, rab27 upregulation in MCI was considered
intermediate between NCI and AD, whereas upregulation of rab4 appeared as a later
alteration, since significant changes were found in AD, but not MCI, consisent with our
previous observations in CA1 pyramidal neurons (Ginsberg et al., 2010a). Despite the
suggestion of a trend (e.g., for downregulation of the synaptic-related marker rab3), no
statistically significant differential regulation was observed for rab1, rab2, rab3, rab6,
rab10, or rab24 (Table II). Moreover, expression profiling of select rab GTPases in
postmortem NB neurons correlated with antemortem cognitive measures. Strong negative
associations were found between GCS performance and rab4 (p < 0.02), rab5 (p < 0.004),
rab7 (p < 0.006), and rab27 (p < 0.004) NB neuron expression levels (Fig. 2). Similar
associations were also observed between MMSE and these CBF neuron expression levels
(data not shown). Higher Braak scores were associated with upregulation of rab5 (p < 0.01),
rab7 (p < 0.008), and rab27 (p < 0.04) in CBF neurons.

qPCR validation of microarray data
Select rab GTPase gene expression levels were evaluated via qPCR using micropunches of
frozen basal forebrain obtained from NCI, MCI, and AD cases. qPCR analysis
independently validated the microarray findings, including upregulation of rab4, rab5, rab7,
and rab27 and no changes in rab24 expression (Table III). Similar to the microarray
observations, correlation of basal forebrain qPCR product levels with antemortem cognitive
measures and neuropathological criteria indicated significant negative association between
GCS performance with rab4 (p < 0.0006), rab5 (p < 0.0001), rab7 (p < 0.0001), and rab27
(p < 0.04) basal forebrain expression levels. Similar correlations were observed between
MMSE scores and rab4, rab5, rab7, and rab27 expression levels. Basal forebrain rab
GTPase upregulation also correlated with Braak scores, NIA-Reagan diagnosis, and
CERAD diagnosis for rab4 (Braak, p < 0.02; NIA-Reagan, p < 0.005; CERAD, p < 0.03),
rab5 (Braak, p < 0.0005; NIA-Reagan, p < 0.002; CERAD, p < 0.01), rab7 (Braak, p <
0.002; NIA-Reagan, p < 0.0004; CERAD, p < 0.03), and rab27 (Braak, p < 0.002; NIA-
Reagan, p < 0.002; CERAD, p < 0.02).
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Immunoblot assessment of rab5 and rab7 in the basal forebrain
Immunoblot analysis using basal forebrain homogenates identified an ~27 kDa band with
the rab5 antibody and an ~25 kDa band with the rab7 antibody. Quantitative analysis
demonstrated a significant upregulation of rab5 (p < 0.02; AD & MCI>NCI) indicative of an
early alteration, whereas comparison of rab7 expression among clinical diagnostic groups
did not reach statistical significance (Table IV). Upregulation of basal forebrain rab5
expression also correlated with Braak staging (p < 0.002).

Discussion
An overall goal of our expression profiling studies is to identify mechanisms that underlie
selective vulnerability of specific neurons and fucntional circuits during the progression of
AD. In the present study we applied this approach at the level of homogeneous neuronal
populations to evaluate vulnerable cholinergic neurons within the NB subfield of the CBF.
Simultaneous quantitative assessment of multiple rab GTPase mRNAs by LCM, TC RNA
amplification, and custom-designed microarray analysis combined with qPCR and
immunoblot validation strategies provides a paradigm whereby CBF neurons can be
differentiated from adjacent neuronal and non-neuronal populations (Che and Ginsberg,
2004; Ginsberg, 2008; Ginsberg et al., 2006c; Mufson et al., 2008). Importantly, the
experimental design enables postmortem quantitative analyses of vulnerable CBF neurons in
subjects at different stages of clinical impairment and facilitates comparisons with
antemortem cognitive measures from the same subjects (Counts et al., 2007; Galvin and
Ginsberg, 2005; Ginsberg et al., 2006c, 2010a). Results indicate endosomal dysfunction
occurs within the cholinergic neurons of the NB during prodromal AD. Expression profiling
revealed significant upregulation of early endosome effector genes including rab4 and rab5,
the late endosome gene rab7, and exocytic pathway gene rab27 as AD progresses.
Importantly, upregulation of these select rab GTPases correlated with cognitive decline and
neuropathological criteria for AD. These findings are similar to those found within CA1
pyramidal neurons,where an upregulation of rab4, rab5, and rab7 were observed (Ginsberg
et al., 2010a), consistent with the present report. Interestingly, the trafficking marker rab24
was upregulated in CA1 pyramidal neurons, whereas rab27 was not differentially regulated
(Ginsberg et al., 2010a), which may reflect the intrinsic properties of these two different cell
types.

The present results are consistent with a growing body of literature in human postmortem
material and in animal and cellular models of AD and Down’s syndrome (DS) that indicate
over activation of the endosomal pathway occurs early in the progression of the disease
process. Current findings confirm and extend previous morphological, molecular, and
cellular datasets demonstrating enlarged endosomes and upregulation of select rab GTPases
in AD (Cataldo et al., 1996, 2000, 2008; Ginsberg et al., 2010a; Grbovic et al., 2003; Nixon
and Cataldo, 2006). Specifically, overexpression of rab5 causes enlarged endosomes, one of
the earliest pathological alterations observed in AD, and rab5 upregulation is found in
vulnerable hippocampal and basal forebrain regions, but not in the relatively spared striatum
and cerebellum in MCI and AD (Cataldo et al., 2000, 2001, 2008; Ginsberg et al., 2010b).
The present novel finding of rab27 upregulation is consistent with exosome secretion
abnormalities in AD (Ghidoni et al., 2009; Gomi et al., 2007; Ostrowski et al., 2010), and
may point to a link in defective TrkB trafficking through interactions with rab27 on
signaling endosomes (Arimura et al., 2009).

Without proper expression and maintenance of neurotrophin receptors, principally TrkA and
the pan-neurotrophin receptor p75NTR within CBF neurons, cholinotrophic forebrain circuits
critically important for mnemonic and executive function are at risk for neurodegeneration
(Boissiere et al., 1997; Chu et al., 2001; Ginsberg et al., 2006c; Mufson et al., 2007b, 2008).
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The regulation of neurotrophin signaling in the forebrain is likely to be dependent upon a
multiplicity of factors including specific rab GTPases. Indeed, our previous single cell
research has demonstrated early down regulation of TrkA, TrkB, TrkC, but not p75NTR

within CBF neurons of the NB during the progression of AD (Ginsberg et al., 2006b,
2006c). We cannot exclude the possibility that other factors, such as gender, immunological
responses, epigenetic alterations, and environmental exposures (Chouliaras et al., 2010;
Coppede and Migliore, 2010; Counts et al., 2011; Licastro and Chiappelli, 2003), as well as
additional classes of transcripts and their encoded proteins are involved in
neurodegenerative programs within vulnerable populations, such as CBF neurons, within
MCI and AD brains including glutamate receptor subunits, synaptic-related markers, energy
and metabolism related markers, and apoptotic signaling genes, among others (Blalock et
al., 2004; Colangelo et al., 2002; Liang et al., 2007, 2008). Notwithstanding these caveats,
interrelationships between retrograde endosomal trafficking of neurotrophin/neurotrophin
receptor complexes are well documented, particularly within the basal forebrain cholinergic
neuronal system with NGF and BDNF binding to, and trafficking with TrkA, TrkB, and
p75NTR (Arimura et al., 2009; Bronfman et al., 2007; Howe and Mobley, 2004; Valdez et
al., 2007). Interestingly, in vitro studies indicate that rab5 overexpression downregulates
TrkB (Ginsberg et al., 2010a). This observation together with our findings of rab5 gene and
protein upregulation in both CA1 pyramidal and CBF neurons suggest a mechanistic
interaction associated with neuronal vulnerability. The endosomal system is also perturbed
in relevant animal models, including the Ts65Dn mouse model of DS and AD, with
amyloid-beta precursor protein (APP) being required for the manifestation of the early
endosome enlargement phenotype (Cataldo et al., 2003; Salehi et al., 2006). These finding
suggest an interaction between App gene dosage, APP processing, and APP metabolites of
this regulatory circuit with the endosomal system. rab GTPase-mediated regulation of
endocytosis is critical for synaptic plasticity associated with learning and memory (Ng and
Tang, 2008; Nixon, 2004), as well as with cellular degradative pathways shown to be
dysfunctional in the AD brain (Nixon et al., 2000, 2008). Importantly, rab5, rab7, and rab27
regulate endocytic sorting within axonal retrograde transport pathways (Arimura et al.,
2009; Deinhardt et al., 2006).

The present expression profiling results within homogeneous populations of NB CBF
neurons indicate the importance of evaluating rab GTPases and other endosomal-lysosomal-
autophagic markers within vulnerable cell types in MCI and AD. Within the context of our
ongoing profiling studies of NB CBF neurons across different stages of cognitive
impairment (NCI, MCI, and AD), upregulation of select rab GTPases is found along with
dysregulation of several other relevant markers, including upregulation of α7 nicotinic
acetylcholine receptor (CHRNA7) and matrix metalloproteinase 9 (MMP-9) expression
(Bruno et al., 2009; Counts et al., 2007), an increase in the ratio of proNGF to the mature
NGF peptide (Mufson et al., 2007b; Peng et al., 2004), and galanin fiber hyperinnervation in
CBF neurons (Counts et al., 2006, 2008, 2009) (Fig. 3). By contrast, downregulation of
TrkA, TrkB, TrkC, and BDNF (both proBDNF and the mature peptide) is also observed
within NB CBF neurons (Ginsberg et al., 2006b, 2006c; Peng et al., 2005), along with a
shift in the 3-repeat tau/4-repeat tau ratio (Ginsberg et al., 2006a), providing a dynamic
regulation of genes and encoded proteins that may be a fingerprint of selective vulnerability
(Fig. 3). Also, several genes and encoded proteins that are relevant to the cholinergic
phenotype of CBF neurons do not appear to be altered in AD (with the possible exception of
end-stage disease), including p75NTR, sortilin, and choline acetyltransferase (ChAT)
(Ginsberg et al., 2006b, 2006c; Mufson et al., 2002, 2010), although potential gender
differences within p75NTR expression are now being recognized (Counts et al., 2011). We
conclude that over activation of select early and late endocytic as well as exocytic rab
GTPases contribute to CBF neurodegeneration, in part, by impairing neurotrophin receptor
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signaling and that these genes are early molecular markers for the development of MCI and
AD.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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RESEARCH HIGHLIGHTS
Microarrays, qPCR, and immunoblotting assessed CBF neurons in NCI, MCI and AD.
Upregulation of select rab GTPases was seen in MCI and AD versus NCI CBF neurons.
Upregulation of rab4, rab5, rab7 and rab27 was validated via qPCR in basal forebrain.
rab GTPase defects correlated with antemortem cognitive decline and neuropathology.
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Figure 1.
Differential regulation of rab GTPases during the progression of AD. Box and whisker plots
indicating log-transformed gene expression levels of select rab GTPases. Upregulation of
rab5 and rab7 was found in MCI and AD (asterisks) and is considered an early change.
Upregulation of rab4 was seen in AD (asterisk) and is considered a later change. rab27
upregulation in MCI (double asterisk) was considered intermediate between NCI and AD
(asterisk).
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Figure 2.
Association between select rab GTPase gene expression levels within CBF neurons and
antemortem cognitive measures in the same subjects. Scatterplots illustrate the association
between gene expression levels and GCS for cases classified as AD (red circles), MCI (blue
triangles), and NCI (green squares). Strong negative associations were observed between
rab4 (p < 0.02), rab5 (p < 0.004), rab7 (p < 0.006), and rab27 (p < 0.004) gene expression
and GCS performance. No significant associations were observed between rab10 and rab24
expression and GCS.
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Figure 3.
Schematic illustrating the balance between specific genes and encoded proteins that are
altered in vulnerable CBF neurons during the progression of AD. Specific elements that
have been found to be upregulated (white), downregulated (black), and not significantly
altered (yellow) are depicted which may contribute to the selective vulnerability of NB
neurons. Adapted from (Mufson et al., 2008).
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